ȿռԤΤ
ץ

ޡȥץȾϤޤӥͥޥȿŪʤʤΤ긵ء

ƥ SWITCH

ǯ ADHDˤĤƤκǿ椬𤵤ޤ


ADHDǾ礭ˤ鷺ʺ絬ϸdzǧ
http://www.afpbb.com/articles/-/3118188?cx_part=txt_topics


Υ󥯤Ϥʸ
Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis


θƧޤADHD βפԤǤ륵ץȤ򤴾Ҳ𤤤ޤ礦


ޤ֥ǰҲ𤷤ΰʸ򤪤餤ɬפ뤫⤷ޤ

ʤߤˡʸǻȤƤ륢ꥫͻϡڹͻۤؤ뤳ȤǤޤ

ʤʤ顢̤夲Τϡֳʬפ¾ʤޤ

ƥꥫͻȹͻϡʬפƱǤ


Lyon MR, Cline JC, Totosy de Zepetnek J, Shan JJ, Pang P, Benishin C. J Psychiatry Neurosci. 2001. Effect of the herbal extract combination Panax quinquefolium and Ginkgo biloba on attention-deficit hyperactivity disorder: a pilot study. 2001 May;26(3):221-8.


Ƥߤޤ

̣ΤϤʸɤߤޤ


ADHD Фͻȥ祦եθ

ˡΤ317ФޤǤ ADHD οǴ (DSM-) ˳Ƹ36ͤоݤȤƸԤä

ƸˤϿͻ 200mgȥ祦ե 50mgäץ 2γ/ʢ 4Ƥ餤Ϥ 2ָ 4ָɾԤä

ɾˡȤƤϡͿȸǿƤФĴԤADHD μפʾɾ (ȿŪưؽ㳲¿ưư԰ҲŪꡢ԰) Ѳӡ ADHD οǴ (DSM-ʡɾ١CPRTconners parent rating scaleˤʤ) ѲˤĤƴѻ

̡ͻȥ祦եäץ߻ϤƤ2ָ塢嵭7Ĥμ׾ɾΤȿŪưˤĤƤ 64%λƸǡؽ㳲ˤĤƤ 56%λƸǡ¿ưưˤĤƤ50%λƸDzǧ줿

4ָˤϡ7Ĥμ׾ɾ٤Ƥͭդʲǧ줿

ޤ7Ĥɾ˾Ȥ餷ƤߤƤ24ɤλˤƤ⤹٤Ƥɾͭդʲǧ줿㤨СDSM-դιܤǤ 2λ 39%λƸǡ4λǤ 75%λƸDzä

ѤˤĤƤϡưưȽǤ줿Ƹ2ͤ

ޤ꥿ʻѤƸȯƬˤäƸ줾1ͤĤͻȥ祦դαƶǤΤɤǤʤä


Ѥλ



ơϡǤ

ʸ˽񤫤줿 Ginseng extracts ιܤǽҤ٤Ƥ롢Ƥ


ȴ
Ginsenosides have been shown to possess neurotrophic effects. The ginsenosides Rb1 and Rg1 have been shown to potentiate the effects of nerve growth factor, which is a critical endogenous neurotrophic substance.
This suggests that long-term administration on ginseng extract may have the potential to promote the growth of underdeveloped brain regions in those with ADHD.



󤷤ޤȡʤޤ
ginsenosides ϿбܺѤͭƤ



ginsenosides Ȥϡͻ䥢ꥫͻ˴ޤޤʬǤ

ginsenosides Rb1Rg1ϡĹҤθ̤¥ʤ롢Ȥޤ


Ĥޤꡢꥫͻ⤷ϹͻʪʥˤĹݼ褹ȡ

ADHDδ̤ȯãǾΡʬŪĹ¥ʤǤǽ롣


äơADHDΩƤΰĤȤƤϡ

ûŪˡޤĹŪˤ⡢

祦եܹͻȤ߹碌ɤΤǤϤʤǤ礦


ǤϡͤޤǤˡɤʹͻ㤨ɤǤ


ˡĴ٤ϡ嵭ڳʬޤޤƤۤݤǤ


ܤƤڥץȤΥ٥ۤˤϡֳʬפϽ񤫤줪ޤ

٥ɽƤޤˡ˿줫ͤʤǤ


ǡ
ޤޤʬˤĤƤϡ᡼ľܿҤͤ뤫᡼HPκܤ̤ȤɬפǤ



ȤСȯ䤹 SWITCH ˤϡ嵭 (ɬפʬ̤ȳʬ) ͻȥ祦դޤޤƤ褦Ǥ


äơADHDɤȤۥե륻󡢤ơХѥ⥨۹礵Ƥޤ

SWITCH ƤƤߤƤɤ⤷ޤ


SWITCH Amazonڡ
https://www.amazon.co.jp/dp/B0095GON76

祦եǾɤͳϷή䤹ǤϤʤ褦



ߥåؤ J. V. Smith ᡢ Y. Luo ˤ륤祦եΥӥ塼򤴾Ҳ𤷤ޤ礦


֥ ӥ ȥ饯 ( 祦ե ) ʬҳŪᥫ˥˴ؤ븦
Studies on molecular mechanisms of Ginkgo biloba extract Appl Microbiol Biotechnol (2004) 64: 465472 J. V. Smith . Y. Luo




祦եˤϣĤʬꡢ餬ˡѤäƤȤȤ餳Υӥ塼ϻϤޤ롣


1)ƥڥ


2)եܥΥ



1)ƥڥϼʬव롣


a)󥳥饤 ABCJM


b)ӥХ饤



a)󥳥饤ɤθ


󥳥饤ɤϷ쾮ij (PAF) Υ󥿥˥Ȥǡ쾮ijӶŽ˳롣ˤäƷս۴Ĥ ס1


󥿥˥ȤȤϤѤ˳ʪ (ɹʪ)


Ĥޤꥮ󥳥饤ɤϷηɤȤԤǤ롣



2)եܥΥɤθ


եܥΥɤϹѤȯ롣

եܥΥɤ˧ĤŷˤäƹƤ롣ˤäơҥɥ饸ˤȿ䤹ľŪ٥󥸺Ѥͭ (2)


ҥɥ饸ϥե꡼饸롣


ҥɥ饸¾ʪȿ䤹ѥģΣĤ롣


˥塼ʪǤ˰»ûФƤ⡢Υ饸뤬᡼Ϳ롣


եܥΥɤϤĤޤ˥塼뤳ȤԤǤ롣





SOD ( superoxide dismutase ) Τ褦ʹѥȯ륿Τ褦ʹʪä (3)(4)


SODȤФΥҥɥ饸̵ǤΤȡ


ȤSODϲȼƤޤ


եܥΥɤSODä롣




եܥΥɾο prooxidant transitional metal ions (㤨Fe2+) ȷ礷ƥ졼ȴĤ (3)


ˤ꿷ʥҥɥ饸˳ (2)(5)


ŴϻӤ䤹


ŴǤƱǤ


嵭ϡեܥΥɤŴȿƻɤȤ






ǤϤʬޤ।祦եμפʸ̤ˤĤơ



ե꡼饸롢ȥ쥹ˤĤ


ե꡼饸륹٥󥸥㡼ѤäƤ

ROS ( reactive oxygen species ) ȿǻ٤򸺾 (6)(7)(8)


ROS ( Ǽ ) Ȥϥե꡼饸롢ǤΡ


祦եϤ򸺤餹ȤϹѤˤĤƤ



ȿ (6)


ȿȤϡλϢȤݤΤȡ


뤭äǿǤȴ줿ϡե꡼饸Ȳ


줬ϢλϤޤꡣ


饸벽¾ʪŻҤå饸䤷Ƥ椯


饸ϷʻοǤĤĤ̤


Ȥ褦ˡȿȤϡлӲݡ


ƥ祦եϤϢȿƯͭ롣


ʤߤˡ


ӥߥE饸򸵤᤹ʪ


ӥߥŤΥץݼ¿̤ˤʤ䤹ä夲ͤʤΤդɬס


λɤΥץȤ֤ʤ顢եܥΥɤɤǤ礦




2 ȥ쥹


PBR ( peripheral-type benzodiazepine receptor ) ȯ򸺤餹 (6)


PBRȤϡ٥󥾥ԥΤΤȤǥιˤΤΤȡ


¿¸ߤƤ롣


祦եϥ̤򸺤餹褦Ǥ롣



¸ԲķʥۥǤϤΤΡΤ͡ʾ㳲ۥǤ⤢롣


ȤХȯʤȥ쥹ϡϤѽ̤ͤޤ󡣳ϤΥ˥塼󤬻ǤƤޤ


ϤˤϥμΤ¿ޤ


ʢ¿ơ饹ȥ쥹ϤҤȤ餻롣Ϥޤ̤ʵˡ


ϤΤΥȥ쥹ȿؤȡָƤӤ״ﴱǤ뤿ᡢ̤ΩĻȤߤǤ


ʥϡŪʥȥ쥹ϡ˳ϤΥ˥塼ֶʳפؤɤߤͤޤ


ֶʳפȤݤϥ˥塼󤬻ǤȤߤΤҤȤĤǤ


˻ɷ㤵줿˥塼˥륷।̤ή˥塼󤬶ʳ֤Ȥʤꡢư򵯤̤ơǤ롢Ȥݡ


ϤεǽˤĤϤΤȻפޤǰΤᡣ


Ϥϵ夵국Ƥӵꤹ뵭ﴱǤ


ޤϤΤΥȥ쥹ȿؤž륹åǤ⤢롣


äƳϤͤǤäƤ˥塼󤬿ľꡣ




ǾΥΥߥ ( MAO ) 㲼 (9)


MAO ( Υߥ󥪥 ) ˳ǾΥɡѥߥǻ٤夲롣


MAO˳ϡꥫǤϹĺޤȤƤȤ뤳Ȥޤ


줹ʤ祦եιĺѤ򼨤Ǥ




3 ˥塼Υݥȡؤκ


˥塼Υݥȡθ (10)(11)(12


ݥȡȤϥץव줿˦λǡ˦μȸ븽ݤǡ˥塼ǸΤҤȤġ




4 ǧεǽؤθ


祦եϥߥɥ١Ȥ𤵤Ƥޤ


в˦˦ˤ륢ߥɥ١ζŽ (11)


ջ׷ǽϤưʪˤ뿷νȥ쥹ؤα䵤ʬѲȤäҤФͭ (9)(13)


ģΣ»۾ʥΥѥ뤳Ȥޤ


ȤǾˤƤϡѥ¤βǡ衢¦ޤꤿޤ٤ʬˤभФȤʤ뤳Ȥޤ


۾ʥѥƱ֤夷ȲƤ椯


βϥߥɥ١ȸƤФޤ


ߥɥ١ϥĥϥޡ¤θΤҤȤĤȤ⸫Ƥޤ


ߥɥ١夷˥塼Ϥ䤬ƿ夷Ǥ뤳ȤʬäƤޤ


祦եϤοʳˤ˥塼Ȥ⤢ޤ


嵭ϥ祦եߥɥ١ηȤǤ


ʤߤˤΥӥ塼ˡ祦եεϲѤ𤹤ʸΰѤϤޤ󤬡βǽ򼨤ʸ򸫤Ĥ뤳ȤϤǤޤ


ʬҥ٥ǤϡȤ NDMAΡĹ˴طΡˤΥΥåȥޥ˥祦եͿϤä𤵤Ƥޤ




5 աήɤؤκ


쾮ij PAF ̤ˤǾβ (10)


ͳд˰ EDRF (Stimulation of endothelium-derivedrelaxing factor) λɷˤư̮̮Ӻٴɤν۴IJ (14)


ɤΤäȤ¦¸ߤ͡ʪʬ礷ޤ


EDRF (NO ) ⤽ΤΤҤȤġ


ǤϷɤдˤ롣


祦եήɤȤΤϤΤȹͤ롣




5 ãʪؤκ


ǾΦ1-ɥʥΡ5-HT1A ( ȥ˥ ) ΤӥॹΤǯˤ븺ͽ (6)


Ϥιȥ󥹥ݡμߤ (6)


ʥץ˦Ф줿륳ϡʥץ˦μΤȤǡ®ʬ򤵤ޤ 󥨥ƥ顼ˤäƥȿݻˡ


ʥץϿã򤹤뤿˥륳١ͭʤФʤޤ


˥塼ϥ륳θǤ륳ޤΤǡʬ򤵤ƼϤɺ򡢺١ʥץ˼ꤳɬפޤ


Ϥιȥ󥹥ݡȤϡ饳μ߸ΤȤǤ


Ĥޤꥤ祦եϥ륳䤹褦ǤʥΥꥵΨ夵ˡʤʤߤ˹ͻˤ⤳Ưޤ


륳ϡηؽư̲˴طãʪǤ뤳ȤϤΤȻפޤ




7 ȥ쥹ѡȯؤκѤʤ


ϤΥ륳ɼΤΥ쥮졼˳ (6)


祦եϡȥ쥹ؤϤȤ


ϤΥ륳ɼΤθ򤯤ȤȤκѤϡιƱͤƯ


륳ɼΤȤϥμΤǤ


μΤγȤϡΤΥȥ쥹ȿؤڤؤ뤿˽ס


ϤˤϥμΤ¿ꡢ椨ʥϳϤ˲ȤΤۤɤΤä




ΰҤž̤Ĵ᤹롣η̡˦ι֤äȥ쥹򶯲ã륳̤(15)


DNA佤˦ˤ뵡ǽ˴ؤ륿ѥѲ˱ƶ򤢤DNA»(15)


祦եϰȯ˺ѤϤζ˥塼˶Ưͭ롣




8 ¾


ߥȥɥꥢθƵĴΨäˤATP٥ (1)


ϥ祦եΥͥ륮䤹Ȥ


ۤˤ⡢祦եϹ⻳¤ͭǤȤ⤢롣


줬̣ΤϻǤμ߸Ψ夲ȤȤǤ


ΤʤǤǤμߤθ֤ϤӤޤ


椹Ȥ錄ϸƵۤĤ˺줬


椷ʤФʤʤȤˤϡ祦եݤޤ礦










椹ŻXSmall












ɺѤǾ㳲Фݸ (16)


Фβĵؤαƶ (6)(3)


祦եϼä˥塼褦Ǥ롣






ǤϡɤΤ褦ʥ祦եݤɤΤǤ礦


祦ե˴ޤޤ륮󥴡ϥˤɤʤȤϾΤȻפޤ


ȤϤ󥴡̤Υ祦ե򶡵뤹븶᡼ʤơ餯¸³ǤʤۤɡνϼǤ


祦եʼϤüˤϰʤȹͤƤɤ⤷ޤ


ȤϤƤθ᡼ϡ¤륤祦եͭͭʬ̤İƤޤ


ˤʤϥץȥ᡼䤤碌Ƥߤ뤳ȤɤǤ礦


ǤϡɤΥ祦եݤ뤫षƬǾΤϥ祦եΥݥƥ󥷥ɤФȤȤǤ礦


祦ե¾ΥץȤɤȤ߹碌ƻȤޤ礦


錄᤹ΤϡȤйͻۥե륻Ȥ߹碌뤳ȤǤ


ͻϥ祦եƱֶ͡ʳפޤƯ륳䤹ƯԤǤޤ


祦եȤ߹碌¸ǤϡADHD⤵Ƥޤ


Ϥ뤳ȤԤǤޤ



˥祦եȥۥե륻Ȥ߹碌ˤϡϡϤ뤳Ȥ⤵Ƥޤ


饵ץȤ̤˹ʬ˹礦祦եå򸫤ĤƤߤƤϤǤ礦





SWITCH ˤϡȤۤƱ̤Υ祦եͻۥե륻󡢥Хѥ˥饨۹礵Ƥޤ


祦եñȤݤȡޡȥץSWITCHȤ٤ƤߤƤ򤤤⤷ޤ

SWITCH Amazonڡ
https://www.amazon.co.jp/dp/B0095GON76



References
(1)Defeudis FV (2002a) Bilobalide and Neuroprotection. Pharmacol

Res 46:565568

(2)Zimmermann M, Colciaghi F, Cattabeni F, Di Luca M (2002)Ginkgo biloba extract: from molecular mechanisms to the
treatment of Alzheimer's disease. Cell Mol Biol 48:613623

(3)Gohil K, Packer L (2002) Global gene expression analysis identifiescell and tissue specific actions of Ginkgo biloba extract, EGb761. Cell Mol Biol 48:625631

(4)Oken B, Storzbach D, Kaye J (1998) The efficacy of Ginkgo bilobaon cognitive function in Alzheimer disease. Arch Neurol55:14091415

(5)Ni Y, Zhao B, Hou J, Xin W (1996) Preventive effect of Ginkgobiloba extract on apoptosis in rat cerebellar neuronal cellsinduced by hydroxyl radicals. Neurosci Lett 214:115118

(6)DeFeudis F, Drieu K (2000) Ginkgo biloba extract (EGb 761) andCNS functions: basic studies and clinical applications. CurrDrug Targets 1:2558

(7)Lien E, Ren S, Bui H, Wang R (1999) Quantitative structure-activityrelationship analysis of phenolic antioxidants. Free Radic BiolMed 26:285294

(8)Smith J, Luo Y (2003) Elevation of oxidative free radicals inAlzheimer's disease models can be attenuated by Ginkgo bilobaextract EGb 761. J Alzheimer's Dis 5:287300

(9)Pardon M, Joubert C, Perez-Diaz F, Christen Y, Launay J, Cohen-Salmon C (2000) In vivo regulation of cerebral monoamineoxidase activity in senescent controls and chronically stressedmice by long-term treatment with Ginkgo biloba extract (EGb761) Mech Ageing Dev 113:15768

(10)Bastianetto S, Ramassamy C, Dore S, Christen Y, Poirier J, QuirionR (2000) The Ginkgo biloba extract (EGb 761) protectshippocampal neurons against cell death induced by betaamyloid.Eur J Neurosci 12:18821890

(11)Luo Y, Smith J, Paramasivam V, Burdick A, Curry K, Buford J,Khan I, Netzer W, Xu H, Butko P (2002) Inhibition of amyloidbetaaggregation and caspase-3 activation by the Ginkgo bilobaextract EGb761. Proc Natl Acad Sci USA 99:1219712202

DeFeudis FV (1998) Ginkgo biloba extract (EGb 761): fromchemistry to clinic. Ullstein, Weisbaden, Germany

(12)Smith J, Burdick A, Golik P, Khan I, Wallace D, Luo Y (2002) Antiapoptoticproperties of Ginkgo biloba extract EGb 761 indifferentiated PC12 cells. Cell Mol Biol 48:699707

(13)Cohen-Salmon C, Venault P, Martin B, Raffalli-Sebille M, BarkatsM, Clostre F, Pardon M, Christen Y, Chapouthier G (1997)Effects of Ginkgo biloba extract (EGb 761) on learning andpossible actions on aging. J Physiol 91:291300

(14)Smith P, Maclennan K, Darlington C (1996) The neuroprotectiveproperties of the Ginkgo biloba leaf: a review of the possiblerelationship to platelet-activating factor (PAF) J Ethnopharmacol50:131139

(15)DeFeudis FV (2002b) Effects of Ginkgo biloba extract (EGb 761)on gene expression: possible relevance to neurologicaldisorders and age-associated cognitive impairment. Drug DevRes 57:214235

(16)Oberpichler H, Sauer D, Rossberg C, Mennel HD, Krieglstein J(1990) PAF antagonist ginkgolide B reduces postischemicneuronal damage in rat brain hippocampus. J Cereb Blood FlowMetab 10:133135

ȥ쥹ǤΤᤵƤޤ󤫡





ȥ쥹ˤϥ祦ե

ȥ쥹ˤϹͻȤޤ礦


θϤΤȤ𤷤Ƥޤ
https://www.ncbi.nlm.nih.gov/pubmed/14737017



ȿФǤϸ̤ʤ⤷ޤ

ؤιͻ䡢ؤΥ祦դǤϡ̤򼨤ʤ褦Ǥ




Ƥ⤦ҤȤĴοʤȤοʪ

餫ݤäǤη̤Ǥ

( ޤġȤ辰)




ʹּҲ륹ȥ쥹ϡåȤΤꤵʣ


ġ


˱Ϥ̤


Ƨޤϡϡ


ܤƤʤȥ쥹ʤäꡢǤϡȥ쥹Ȭդ򤫤뤿κȤϡ



祦եȹͻϤäݤ뤳ȤǤޤ



ष¿˻ʤҤȤˤϤ줬ɤǤ礦


ĤοʪȤ߹碌ϡϡADHDˤβԤǤ뤫⤷ʤǤ
https://www.ncbi.nlm.nih.gov/pubmed/11394191




ƥ SWITCH ˤ

祦եȹͻޤޤƤޤ

餱ʤ SWITCH ƤߤƤϤǤ礦

SWITCH Amazonڡ
https://www.amazon.co.jp/dp/B0095GON76

祦XSmall

Ƚ˥򤢤 [1] [2]


ADHDβ򥵥ݡȤ [1]


ǾιѤ¥ [1] [3]


ġȥ쥹̤¥ [4]


˥塼οĹ¥[5]


ȤԤǤ뿢ʪΥȤϡ


ܤǤϥץȤǤ뤳οʪķϤνȤäˤΤळȤϡۤ褵Ǥ


ߤ̤򶯤ƤޤΤǤդ


ǾǽηʺưʤХѥɤ⤷ޤ

ADHDˤʤˤɤǤ礦




Хѥޤޡȥץ

SWITCH Amazonڡ
https://www.amazon.co.jp/dp/B0095GON76


[1] Хѥ˥饨ϡϤȵϡŻ̤ȥ顼̲Ƭˤͭդ˲Ҷγؽϡϡϡȿ塣ǾǤιѡ ADHD ͭѤǤ롣
PMID19944749 http://www.ncbi.nlm.nih.gov/pubmed/19944749

[2] Хѥ˥饨ϲˤ뵭Ͼ㳲
PMID20703343http://www.ncbi.nlm.nih.gov/pubmed/?term=20703343

[3] Хѥ˥饨ϥåȤƬΡϤʤǾιѤͥ¥ʤ
PMID10815010http://www.ncbi.nlm.nih.gov/pubmed/?term=10815010

[4] Хѥ˥饨ϡȥ쥹ˤ̤ͥ˲ץȥͭ뤳Ȥǧ
PMID12957224http://www.ncbi.nlm.nih.gov/pubmed/?term=12957224

[5] Хѥ˥饨ϥåȤγCA3ɼμ͵Ĺ
PMID21892534http://www.ncbi.nlm.nih.gov/pubmed/?term=21892534

ãXSmall

ͻ˥塼λǤޤǽΤ뤳ȤϡǤ⤴Ҳ𤷤ޤ


ֶʳפ򤪤Ϥ餭ˤĤƤǤ


äƹͻϡ륳դˤɤƶ򤪤ܤ褦Ǥ


θʸϡͻˤդޤʬ󥻥Υ Rb1 륳󡦥꡼䤷Ϥ㲼դ𤷤Ƥޤ


зϤΥнˤ륳ߤؤginsenoseidesαƶ
PMID: 1338897Actions of ginsenoside Rb1 on choline uptake in central cholinergic nerve endings.
www.ncbi.nlm.nih.gov/pubmed/?term=1338897


Ǿǥ륳󤬺ݡꥵλȤߤϤ餭ޤ


ʥץ饢륳롢ƱˡФ줿륳ʬ򤹤뤿ιǤưФޤ


륳ʬ򤵤ƥˤɤޤ


Ϻ˦˼ޤ졢륳ؤȹ롣


ͻγʬϡΤȤμ̤䤹Ȥʤ褦ʤΤǤ


ޤ嵭θʸϡ륳̤ϵǤͻݤ³ɬפä𤷤Ƥޤ



Υޡȥץʤ顢ͻ۹礵Ƥ SWITCH ɤǤ礦

SWITCH ȥ

SWITCH Amazonڡ
https://www.amazon.co.jp/dp/B0095GON76


ãXSmall

ͻƬǾηʺưޤ


Ǿؤαƶϡ礭櫓ƻġ


˥塼ɤƯ롣


ͻϡãʪФ򤦤ʤ[1]


Ϥ[2.3]


ʥץˤؽǽϤˤ褤ƶ򤢤[4]


ǾΥͥ륮Ψ夵롣 [5]





˥塼Ƥ롣


ͻϡĹҤΤϤ餭¥ʤޤ[6.7]


ĹҤȤϡ򿭤Фꡢãʪꡢ˦»ʤǽ򤦤ʤѥǤ





˥塼Ǥޤ롣


Ūȥ쥹ϡϥ˥塼βưǤޤ


ϡֶʳפȤƤФޤ


ΡֶʳפȤϥ˥塼˥륿ߥ󤬲ή˥塼󤬲ư򵯤䤬ƻǤȤݤǤ

˥塼γưХ󥹤򡢹ͻͭʬΩľ褦Ǥ [8.9.10]





ڤޤȤ


ͻ

ŻǽΨСưѥեޥ󥹤βȥ쥹򶯲ȱϤθ夬ԤǤޤ



Υޡȥץʤ顢ͻ祦եۥե륻󡢥ХѤŪΨ۹礵줿 SWITCH ɤǤ礦

SWITCH Τ
SWITCH Amazonڡ
https://www.amazon.co.jp/dp/B0095GON76

iStock_000015346724Small

[1] Xue JF, Liu ZJ, Hu JF, Chen H, Zhang JT, Chen NH. Ginsenoside Rb1 promotes neurotransmitter release by modulating phosphorylation of synapsins through a cAMP-dependent protein kinase pathway. Brain Res. 2006 Aug 23;1106(1):91-8. Epub 2006 Jul 11.
[2] Benishin CG. Actions of ginsenoside Rb1 on choline uptake in central cholinergic nerve endings. Neurochem Int. 1992 Jul;21(1):1-5.
[3] Sloley BD, Pang PK, Huang BH, Ba F, Li FL, Benishin CG, Greenshaw AJ, Shan JJ. American ginseng extract reduces scopolamine-induced amnesia in a spatial learning task. J Psychiatry Neurosci. 1999 Nov;24(5):442-52.
[4] Abe K, Cho SI, Kitagawa I, Nishiyama N, Saito H. Differential effects of ginsenoside Rb1 and malonylginsenoside Rb1 on long-term potentiation in the dentate gyrus of rats. Brain Res. 1994 Jun 27;649(1-2):7-11.
[5] Samira MM, Attia MA, Allam M, Elwan O. Effect of the standardized Ginseng Extract G115 on the metabolism and electrical activity of the rabbit's brain. J Int Med Res. 1985;13(6):342-8.
[6] Himi T, Saito H, Nishiyama N. Effect of ginseng saponins on the survival of cerebral cortex neurons in cell cultures. Chem Pharm Bull (Tokyo). 1989 Feb;37(2):481-4.
[7] Rudakewich M, Ba F, Benishin CG. Neurotrophic and neuroprotective actions of ginsenosides Rb(1) and Rg(1). Planta Med. 2001 Aug;67(6):533-7.
[8] Kim YC, Kim SR, Markelonis GJ, Oh TH. Ginsenosides Rb1 and Rg3 protect cultured rat cortical cells from glutamate-induced neurodegeneration. J Neurosci Res. 1998 Aug 15;53(4):426-32.
[9] Kim S, Ahn K, Oh TH, Nah SY, Rhim H. Inhibitory effect of ginsenosides on NMDA receptor-mediated signals in rat hippocampal neurons. Biochem Biophys Res Commun. 2002 Aug 16;296(2):247-54.
[10] Kim S, Kim T, Ahn K, Park WK, Nah SY, Rhim H. Ginsenoside Rg3 antagonizes NMDA receptors through a glycine modulatory site in rat cultured hippocampal neurons. Biochem Biophys Res Commun. 2004 Oct 15;323(2):416-24.

祦եȹͻȤ߹碌 ADHD 𤹤륨ӥǥ󥹤򡢰Ǥ⤴Ҳ𤤤ޤ


ȥ 祦ե 󥻥(ͻ)
http://livedoor.blogcms.jp/blog/taddy_/article/edit?id=51782758


ADHD οǴ˳ 3 ~ 17ФޤǤλƸ36ͤоݤȤǡƸˤϡ 󥻥󥨥 200mg ȥ祦ե 50mg äץ1 2ץ롢ʢ4Ƥ餦


Ϥ2ָ4ָɾԤ


ADHD μפʾɾǤ

ȿŪưؽ㳲¿ưư԰ҲŪꡢ԰

ѲʤɤˤĤƴѻԤ


̡󥻥󥨥ȥ祦եäץ߻ϤƤ顢2ָ塢7Ĥμ׾ɾΤ


ȿŪưˤĤƤ 64% λƸ


ؽ㳲ˤĤƤ 56% λƸ


¿ưưˤĤƤ 50% λƸDzǧ줿


4ָˤϡ7Ĥμ׾ɾ٤Ƥͭդʲǧ줿[1]


ȤǤ



Ϥʸ򤴾Ҳ𤤤ޤ礦


ڥХ ˥ ADHD ͭѡۤ⤷ޤ


36ͤ ADHD λҶˡܻǥХͿȥȥ뷲ӤȤХͿŪϤθ夬줿[2]


μ¸ǻȤ줿ʬ̤ϡХѥ 50 ǡ12֤Ǥ


ADHDˤʤ
ͻ祦եХѥ򤪻



ܤΥץȤǤοʪޤޤƤ륵ץȤޤ


SWITCH Ǥ


SWITCH 1 2ץˤϡ󥻥󥨥 200ӡ祦ե 120 Хѥ˥饨 80 ޤޤƤޤ


äơۥե륻۹礵Ƥޤ


ۥե륻ޤ ADHDβԤǤʪ

ͤޤǤˡ祦եȥۥե륻Ȥ߹碌ϡϤʤɡǾΥѥեޥ󥹤˹׸ǽ⤤ΤǤ
ʤͤϡΥǤ http://atman.asia/archives/51897998.html



SWITCH ƤƤߤƤɤ⤷ޤ


SWITCH Υȥ
SWITCH Amazonڡ
https://www.amazon.co.jp/dp/B0095GON76


[1] Lyon MR, Cline JC, Totosy de Zepetnek J, Shan JJ, Pang P, Benishin C. J Psychiarty
Neurosci. 2001. Effect of the herbal extract combination Panax quinquefolium and Ginkgo biloba on attention-deficit hyperactivity disorder: a pilot study. 2001 May;26(3)221-8.

[2] Negi KS, Singh YD, Kushwaha KP, Rastogi CK, Rathi AK, Srivastava JS.
Clinical evaluation of memory enhancing properties of Memory Plus in
children with attention deficit Hyperactivity disorder. Indian J Psychiatry
2000; 42: 42-50.


webҳiStock_000019078551Medium

Ƭɤ ŪʱǤȤ



ȤСӥߥBΣϡɤŪǽ夵ޤ


ͥ륮դ᤿ꡢѤȯꡢãʪ¤䡢Ѵɬפä

˥塼ݸȯãɬܤǤäꡣ



˥ӥߥá


夵Ȥθ𤬤ޤ


ޤӥߥ ϥӥߥ ȶƯƥ˥塼λꥹ򸺤餹ȤԤǤޤ


Ĥ˥ߥλ


ե˥륢˥ϡãʪΥΥ륢ɥʥ䤹


Υ륢ɥʥäϡȤˡȥ쥹νϤݤĤɬפǤ


ʤߤˡեϡοãʪ񤹤뤳Ȥdzø̤򤢤ޤ


եѡ饤鴶䵤ʬߤϡοãʪΥ륢ɥʥθϳˤΤȤ⤤Ƥޤ


륮˥䥰륿ߥʤɤΥߥλޤθ礤˹׸ޤ


륷ʤɡߥ̵ͥǤޤ


ʬ


줳Ǿγư˥ѥ򤢤ޤ( ӤϤȿ٤ޤ礦 )


餬 ( ޤۤˤ ) 를꡼˴ޤޤƤޤ



ϡַϤΥޡȥץ SWITCH ȡǾΤδñܤΥ를꡼ϡʻݤ뤳ȤǤޤ


ʤߤˡ를꡼ϡꥫפǤ



SWITCHΥȥ
SWITCH Amazonڡ
https://www.amazon.co.jp/dp/B0095GON76

ϡۥե륻 ˤĤƤΤäĹǤ


ۥե륻ϡ˦ΤҤȤġ


ʹ֤κ˦ϡ٤ƤλޤǤꡢ¸ɬפʵǽϡΥۥե륻äƤ롢ȸȤǤޤ


ȤС̿ưΥͥ륮λ (ATP)


̿ǽݤĤΥΥۥᥪǽ


˦٥ǤγԳʤɤʤɡ


ƥۥե륻ϡȤˡк˦䥷ʥץ¿¸ߤ[1]


륳ɡѥߥ󡢥Υ륢ɥʥȤäãʪФ䥷ʥã˴ͿƤޤ[2,3,4,5]


ۥե륻ΡƬǾؤͭˤĤơʳŪϼθ̤𤷤Ƥޤ


Ϥβ


ݸ


ȥ쥹


ĺ


ƬǾη򹯤ˤʤˡۥե륻ϡǤ֤ǤϤʤǤ礦



ǤϡʸϤǤ礦


ʿǯ20.4Фηͤоݤˤ祦եȥۥե륻ȤȤ߹碌ĴΤǤ


Ȥ߹碌Ϥ


1) 祦ե120 ñΤݼ褷硣


2) 祦ե120 ȥۥե륻 (PS) 360 Ʊݼ褷硣


3) 祦ե120 ȥۥե륳 (PC) 360 Ʊݼ褷硣


λѥǡָ


ϤΥԡɡ


Ϥ


ֵϤΥԡɡ


ֵ


󼡵


֥󥰥꡼ Ĵ٤Ƥޤ





) 祦եȥۥե륻 Ȥ߹碌Ǥ̤ι⤤Ȥ߹碌ä褦Ǥ


ϤΥԡɡ ˤƤ

祦եñȤ1) ȥ祦եPC3) 2.5ָޤͭդ®ʤä


祦եPSƱݼ 2) ϡˡ6ָˤƤͭդ®


Ϥ Ǥ


祦եPS 2) Ȥ߹碌ͭդʲߤ줿


ֵΥԡɡ Ǥ


祦եPC 3) 4ָ˵դ٤ʤä祦եPS 2) ϡݼ裱֤飶ָΤ٤Ƥͭդ˲[6]


Υȥϡͤ˽񤭴٤⤷ޤ


ƬǾη򹯤ˤϡۥե륻ȥ祦եĤʻݤ٤Ǥ


ǤϤʤۥե륻ϵϤΤǤ礦


Υᥫ˥Τʲ̤ʤƤϤޤ󤬡ˤʤ뤫Ȼפޤ


륳ưʥץǽγ [7]


ʥãϤؤθ [8] [9]


ޤۥե륻ϡݸѤͭƤޤ


ʥͥߤ˥ۥե륻 (200mg/kg,5) 򤢤餫ͿƤ顢ǾƣˡCA1ΰ (ξϵˤϽפΰǤ) οк˦ؤθ̤Ĵ٤


ȥۥե륻Ϳϡץ饻ܷ١к˦ؤΥ᡼ڸƤ[10]


ۤˤDz٤αɤ򵯤ǾȿФ (ȱֺ˦ȿ򹶷⤹륱) ۥե륻ϤαɤƯ򤷤Ƥޤ[13]


ˡۥե륻ϿĹҼοäޤ


Ĺ (Nerve growth factor: NGF) Ͽȯã򤦤ʤǽϤ餫륿ѥǤ[14]


ΤϤ餭NGF ( ϤǾοк˦ɽ̤¸ߤ) NGF礹뤳ȤˤäƵޤ


NGFοϲȼ뤳ȤʬäƤޤ


åȤμ¸ˤƥۥե륻ϡNGFοäƤޤ[15]

ϡк˦ιϷѤ̣Ƥޤ


ƱʸˤϡεҤ⸫ޤ


ˤäƿк˦μ͵Υѥ̩١˥塼ο礭ϸƤ椭ޤϷͥߤ˥ۥե륻 (50mg/kg,24) Ϳ̤ǤϡΤ褦ʸǧʤä[15]


ޤۥե륻ιȥ쥹Ѥ⸫ƨȤϤǤޤ


ȥ쥹ˤϡ뤬ޤ


ΥۥμΤϡǾ (Ȥ˳) ʢ¿ȤΤƤޤ


ȥ쥹Ͽ徺׹ͤᤰ餻ʢˤϤäפȻä򤿤ᤳޤ롣


ͶƳ⡢ΰǤ


ʥϡк˦ˤͭǤ


Ϥοк˦μΤɷ㤷ֶʳ 򾷤Ǥ

(ʳȤϡ륷।κ˦ή뤳Ȥǿк˦˻ᥫ˥)


ۥե륻ϤΥβ껺ޤ


ȥȥ졼˥󥰤ǡСȥ졼˥󥰤ˤʤä˥ۥե륻 (800 /) ݼ褷Ȥȯᥫ˥Ǥ뾲--շϤѲ⤿餷뻺㲼[16,17,18]


ˡۥե륻ϡѤͭƤ褦Ǥ


԰¾㳲䤦ľɾβ[20]


ʡҸǽϤξ徺ǧ줿[16,19,20,21]


ȤǡǾͭפȤ륵ץȤФ뺬ŪʵϡʪۤȤǾϤΤ


ä⡢ޤ


ʤʤ顢Ǿؤ̤BBB (Ǿ) ̤ȴ뤳ȤǤ


ۥե륻ϡиݼˤƤ⡢ǾܹǧƤޤ[10]


ǤϺǸ


ۥե륻ϡ̤ǡɤΤ餤̤ݤɤΤǤ礦


ͤϡ100 ʾݼ褬ͭ[22]


ڷ


Ǿη򹯤ˤϡۥե륻100 ݼ褹뤳ȡ


ȥ쥹¿ȿռԤƬǾϡˡ祦ե120 äݤɤǤ礦



ƥSWITCH HYPER SWITCH ϡʬ̤¸Ƥޤ


ʬץˤϥ祦ե120 ȥۥե륻100


ˡɽŪʥޡȥץ긶Ǥͻ200 ȥХѥ˥饨80 ۹礵Ƥޤ


ǾΥѥեޥ󥹤٤ݤϡ SWITCH ƤƤϤǤ礦


SWITCHΥȥ

Amazonڡ
https://www.amazon.co.jp/dp/B0095GON76

HYPER SWITCH Ϥ顪
https://www.amazon.co.jp/dp/B012QKWVMQ


iStock_000005716223XSmall












[1] Kidd PM. 1999. A review of nutrients and botanical in the integrative management of cognitive dysfunction. Altern Med Rev 4:38-43
[2] Bruni A,Toffano G.1982. Lysophophatidylserine, a short-lived intermediate with plasma membrane regulatory properties. Pharmaco Res Commun 14(6):469-484
[3] Yoshimura T, Sone S. 1990 Role of phosphatidylserine in membrane actions of tumor necrosis factor and interfoerons alpha and gamma. Biochem Int 20(4):697-705
[4] Cohen SA,Mueller WE.1992. Age related alterations in the mouse forebrain:partial restoration by chronic phosphatidylserine treatment. Brain Res 584: 174-180
[5] Moynagh PN, Williams DC.1992. Stabilization of the peripheral-type benzodiazepine acceptor by specific phospholipids. Biochem Pharmacol 43(9): 1939-1945
[6] D.O.Kennedy, C.F Haskell, P.L Mauri, A.B Scholey.2007. Acute cognitive effects of standardized Ginkgo biliba extract conplexed with phosphatidylserine. Hum.Psychopharmacol Clin Exp 2007 ;22:199-210
[7] Pedata F et.al. 1985. Phosphatidylserine increases acetylcholine release from cortical slices in aged rats. Neurobiol Aging 6(4): 337-339
[8] Benowitz LI et.al. 2000. GAP-43:an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 20(2):84-91
[9] Gianotti C et.al. 1993. B-50/GAP-43 phosphorylation in hippocampal slices from aged rats: effects of phosphatidylserine administration. Neurobiol Aging 14(5): 401-406
[10] , ƣ . 2010. Ʀۥե륻Ǿǽ Anti-aging Science 2(2): 57-61
[11] Calderon C, Huang ZH, Gage DA, et.al. 1994. Isolation of a nitric oxide inhibitor from mammary tumor cells and its characterization as phosphatidylserine. J Exp Med 180: 945-958
[12] Venema RC, Sayegh HS, Arnal JF, et.al. 1995. Role of enzyme calmodulin-binding domain in membrane association and phospholipid inhibition of endothelial nitric oxide synthase. J Bio Chem 270: 14705-14711
[13] Monastra G,Gross AH, Bruni A et.al. 1993. Phosphatidylserine, a putative inhibitor of tumor necrosis factor, prevents autoimmune demyelinaction. Neurology 43: 153-163
[14] Angelucci L, Ramacci MT, Taglialatela G, et.al. 1988. Nerve growth factor binding in aged rat central nervous system: effect of acetyl-L-carnitine. J Neuroscience Res 20:491-496
[15] Nunzi MG, Milan F, Guidolin D, Toffano G. 1987. Dendritic spine loss in hippocampus of aged rats Effect of brain phosphatidylserine administration. Neurobiol Aging 8:501-510
[16] Cenacchi T, Bertoldin T, Farina C, et.al. 1993. Cognitive decline in the elderly: a double-blind,placebo-controlled multicenter study on efficacy of phosphatidylserine administration. Aging(Milano) 5:123-133
[17] Monteleone P,Beinat L, Tanzillo C, et.al. 1990. Effects of phosphatidylserine on the neuroendocrine response to physical stress in humans. Neuroendocrinology 52:243-248
[18] Monteleone P, Maj M, Beinat L, et.al. 1992. Blunting by chronic hosphatidylserine administration of the stress-induced activation of the hypothalamo-pituitary-adrenal axis in healthy men. Eur J Clin Pharmacol 42:385-388
[19] Maggioni M, Picotti GB, Bondiolotti GP,et.al. Effects of hosphatidylserine therapy in geriatric patients with depressive disdoers. Acta psychiatr Scand 81:265-270
[20] Crook T,Petrie W, Wells C, Massari DC. 1992. Effects of phosphatidylserine in Alzheimers disease. Psychopharmacol 42:385-388
[21] Amaducci L. 1988. Phosphatidylserine in the treatment of Alzheimers disease: results of a multicenter study. Psychopharmacol Bull 24:130-134
[22] Parris M. 1999. A review of nutrients and botanicals in the integratetive management of cognitive dysfunction. Alternative Medicine Review 4(3):144-161

ϡեե륻 ˤĤƤΤäĹǤ


եե륻ϡ˦ΤҤȤġ


ʹ֤κ˦ϡ٤ƤλޤǤꡢ¸ɬפʵǽϡΥեե륻äƤ롢ȸȤǤޤ


ȤС̿ưΥͥ륮λ (ATP)


̿ǽݤĤΥΥۥᥪǽ


˦٥ǤγԳʤɤʤɡ


ƥեե륻ϡȤˡк˦䥷ʥץ¿¸ߤ[1]


륳ɡѥߥ󡢥Υ륢ɥʥȤäãʪФ䥷ʥã˴ͿƤޤ[2,3,4,5]


եե륻ΡƬǾؤͭˤĤơʳŪϼθ̤𤷤Ƥޤ


Ϥβ


ݸ


ȥ쥹


ĺ


ƬǾη򹯤ˤʤˡեե륻ϡǤ֤ǤϤʤǤ礦



ǤϡʸϤǤ礦


ʿǯ20.4Фηͤоݤˤ祦եȥۥե륻ȤȤ߹碌ĴΤǤ


Ȥ߹碌Ϥ


1) 祦ե120 ñΤݼ褷硣


2) 祦ե120 ȥۥե륻 (PS) 360 Ʊݼ褷硣


3) 祦ե120 ȥۥե륳 (PC) 360 Ʊݼ褷硣


λѥǡָ


ϤΥԡɡ


Ϥ


ֵϤΥԡɡ


ֵ


󼡵


֥󥰥꡼ Ĵ٤Ƥޤ





) 祦եȥեե륻 Ȥ߹碌Ǥ̤ι⤤Ȥ߹碌ä褦Ǥ


ϤΥԡɡ ˤƤ

祦եñȤ1) ȥ祦եPC3) 2.5ָޤͭդ®ʤä


祦եPSƱݼ 2) ϡˡ6ָˤƤͭդ®


Ϥ Ǥ


祦եPS 2) Ȥ߹碌ͭդʲߤ줿


ֵΥԡɡ Ǥ


祦եPC 3) 4ָ˵դ٤ʤä祦եPS 2) ϡݼ裱֤飶ָΤ٤Ƥͭդ˲[6]


Υȥϡͤ˽񤭴٤⤷ޤ


ƬǾη򹯤ˤϡեե륻ȥ祦եĤʻݤ٤Ǥ


ǤϤʤեե륻ϵϤΤǤ礦


Υᥫ˥Τʲ̤ʤƤϤޤ󤬡ˤʤ뤫Ȼפޤ


륳ưʥץǽγ [7]


ʥãϤؤθ [8] [9]


ޤեե륻ϡݸѤͭƤޤ


ʥͥߤ˥եե륻 (200mg/kg,5) 򤢤餫ͿƤ顢ǾƣˡCA1ΰ (ξϵˤϽפΰǤ) οк˦ؤθ̤Ĵ٤


ȥեե륻Ϳϡץ饻ܷ١к˦ؤΥ᡼ڸƤ[10]


ۤˤDz٤αɤ򵯤ǾȿФ (ȱֺ˦ȿ򹶷⤹륱) եե륻ϤαɤƯ򤷤Ƥޤ[13]


ˡեե륻ϿĹҼοäޤ


Ĺ (Nerve growth factor: NGF) Ͽȯã򤦤ʤǽϤ餫륿ѥǤ[14]


ΤϤ餭NGF ( ϤǾοк˦ɽ̤¸ߤ) NGF礹뤳ȤˤäƵޤ


NGFοϲȼ뤳ȤʬäƤޤ


åȤμ¸ˤƥեե륻ϡNGFοäƤޤ[15]

ϡк˦ιϷѤ̣Ƥޤ


ƱʸˤϡεҤ⸫ޤ


ˤäƿк˦μ͵Υѥ̩١˥塼ο礭ϸƤ椭ޤϷͥߤ˥եե륻 (50mg/kg,24) Ϳ̤ǤϡΤ褦ʸǧʤä[15]


ޤեե륻ιȥ쥹Ѥ⸫ƨȤϤǤޤ


ȥ쥹ˤϡ뤬ޤ


ΥۥμΤϡǾ (Ȥ˳) ʢ¿ȤΤƤޤ


ȥ쥹Ͽ徺׹ͤᤰ餻ʢˤϤäפȻä򤿤ᤳޤ롣


ͶƳ⡢ΰǤ


ʥϡк˦ˤͭǤ


Ϥοк˦μΤɷ㤷ֶʳ 򾷤Ǥ

(ʳȤϡ륷।κ˦ή뤳Ȥǿк˦˻ᥫ˥)


եե륻ϤΥβ껺ޤ


ȥȥ졼˥󥰤ǡСȥ졼˥󥰤ˤʤä˥եե륻 (800 /) ݼ褷Ȥȯᥫ˥Ǥ뾲--շϤѲ⤿餷뻺㲼[16,17,18]


ˡեե륻ϡѤͭƤ褦Ǥ


԰¾㳲䤦ľɾβ[20]


ʡҸǽϤξ徺ǧ줿[16,19,20,21]


ȤǡǾͭפȤ륵ץȤФ뺬ŪʵϡʪۤȤǾϤΤ


ä⡢ޤ


ʤʤ顢Ǿؤ̤BBB (Ǿ) ̤ȴ뤳ȤǤ


եե륻ϡиݼˤƤ⡢ǾܹǧƤޤ[10]


ǤϺǸ


եե륻ϡ̤ǡɤΤ餤̤ݤɤΤǤ礦


ͤϡ100 ʾݼ褬ͭ[22]


ڷ


Ǿη򹯤ˤϡեե륻100 ݼ褹뤳ȡ


ȥ쥹¿ȿռԤƬǾϡˡ祦ե120 äݤɤǤ礦



ƥSWITCH HYPER SWITCH ϡʬ̤¸Ƥޤ


ʬץˤϥ祦ե120 ȥեե륻100


ˡɽŪʥޡȥץ긶Ǥͻ200 ȥХѥ˥饨80 ۹礵Ƥޤ


ǾΥѥեޥ󥹤٤ݤϡ SWITCH ƤƤϤǤ礦



SWITCH Υȥ

Amazonڡ
https://www.amazon.co.jp/dp/B0095GON76

HYPER SWITCH Ϥ顪
https://www.amazon.co.jp/dp/B012QKWVMQ


iStock_000005716223XSmall

ΥڡΥȥåץ